Testing¤
jpc.test_discriminative_pc(model: PyTree[typing.Callable], output: ArrayLike, input: ArrayLike, loss: str = 'MSE', skip_model: Optional[PyTree[Callable]] = None) -> Tuple[Array, Array]
¤
Computes test metrics for a discriminative predictive coding network.
Main arguments:
model
: List of callable model (e.g. neural network) layers.output
: Observation or target of the generative model.input
: Optional prior of the generative model.
Other arguments:
loss
: -loss
: Loss function to use at the output layer (mean squared error 'MSE' vs cross-entropy 'CE').skip_model
: Optional list of callable skip connection functions.
Returns:
Test loss and accuracy of output predictions.
jpc.test_generative_pc(model: PyTree[typing.Callable], output: ArrayLike, input: ArrayLike, key: PRNGKeyArray, layer_sizes: PyTree[int], batch_size: int, sigma: Array = 0.05, ode_solver: AbstractSolver = Heun(scan_kind=None), max_t1: int = 500, dt: Array | int = None, stepsize_controller: AbstractStepSizeController = PIDController(rtol=0.001,atol=0.001,pcoeff=0,icoeff=1,dcoeff=0,dtmin=None,dtmax=None,force_dtmin=True,step_ts=None,jump_ts=None,factormin=0.2,factormax=10.0,norm=<function rms_norm>,safety=0.9,error_order=None), skip_model: Optional[PyTree[Callable]] = None) -> Tuple[Array, Array]
¤
Computes test metrics for a generative predictive coding network.
Gets output predictions (e.g. of an image given a label) with a feedforward pass and calculates accuracy of inferred input (e.g. of a label given an image).
Main arguments:
model
: List of callable model (e.g. neural network) layers.output
: Observation or target of the generative model.input
: Optional prior of the generative model.key
:jax.random.PRNGKey
for random initialisation of activities.layer_sizes
: Dimension of all layers (input, hidden and output).batch_size
: Dimension of data batch for activity initialisation.
Other arguments:
sigma
: Standard deviation for Gaussian to sample activities from. Defaults to 5e-2.ode_solver
: Diffrax ODE solver to be used. Default is Heun, a 2nd order explicit Runge--Kutta method.max_t1
: Maximum end of integration region (500 by default).dt
: Integration step size. Defaults to None since the defaultstepsize_controller
will automatically determine it.stepsize_controller
: diffrax controller for step size integration. Defaults toPIDController
. Note that the relative and absolute tolerances of the controller will also determine the steady state to terminate the solver.
Returns:
Accuracy and output predictions.
jpc.test_hpc(generator: PyTree[typing.Callable], amortiser: PyTree[typing.Callable], output: ArrayLike, input: ArrayLike, key: PRNGKeyArray, layer_sizes: PyTree[int], batch_size: int, sigma: Array = 0.05, ode_solver: AbstractSolver = Heun(scan_kind=None), max_t1: int = 500, dt: Array | int = None, stepsize_controller: AbstractStepSizeController = PIDController(rtol=0.001,atol=0.001,pcoeff=0,icoeff=1,dcoeff=0,dtmin=None,dtmax=None,force_dtmin=True,step_ts=None,jump_ts=None,factormin=0.2,factormax=10.0,norm=<function rms_norm>,safety=0.9,error_order=None)) -> Tuple[Array, Array, Array, Array]
¤
Computes test metrics for hybrid predictive coding trained in a supervised manner.
Calculates input accuracy of (i) amortiser, (ii) generator, and (iii) hybrid (amortiser + generator). Also returns output predictions (e.g. of an image given a label) with a feedforward pass of the generator.
Note
The input and output of the generator are the output and input of the amortiser, respectively.
Main arguments:
generator
: List of callable layers for the generative model.amortiser
: List of callable layers for model amortising the inference of thegenerator
.output
: Observation or target of the generative model.input
: Optional prior of the generator, target for the amortiser.key
:jax.random.PRNGKey
for random initialisation of activities.layer_sizes
: Dimension of all layers (input, hidden and output).batch_size
: Dimension of data batch for initialisation of activities.
Other arguments:
sigma
: Standard deviation for Gaussian to sample activities from. Defaults to 5e-2.ode_solver
: Diffrax ODE solver to be used. Default is Heun, a 2nd order explicit Runge--Kutta method.max_t1
: Maximum end of integration region (500 by default).dt
: Integration step size. Defaults to None since the defaultstepsize_controller
will automatically determine it.stepsize_controller
: diffrax controller for step size integration. Defaults toPIDController
. Note that the relative and absolute tolerances of the controller will also determine the steady state to terminate the solver.
Returns:
Accuracies of all models and output predictions.