Discriminative PC on MNIST¤
This notebook demonstrates how to train a simple feedforward network with predictive coding (PC) to discriminate or classify MNIST digits.
%%capture
!pip install torch==2.3.1
!pip install torchvision==0.18.1
import jpc
import jax
import equinox as eqx
import equinox.nn as nn
import optax
import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import warnings
warnings.simplefilter('ignore') # ignore warnings
Hyperparameters¤
We define some global parameters, including the network architecture, learning rate, batch size, etc.
SEED = 0
INPUT_DIM = 784
WIDTH = 300
DEPTH = 3
OUTPUT_DIM = 10
ACT_FN = "relu"
LEARNING_RATE = 1e-3
BATCH_SIZE = 64
TEST_EVERY = 100
N_TRAIN_ITERS = 300
Dataset¤
Some utils to fetch MNIST.
def get_mnist_loaders(batch_size):
train_data = MNIST(train=True, normalise=True)
test_data = MNIST(train=False, normalise=True)
train_loader = DataLoader(
dataset=train_data,
batch_size=batch_size,
shuffle=True,
drop_last=True
)
test_loader = DataLoader(
dataset=test_data,
batch_size=batch_size,
shuffle=True,
drop_last=True
)
return train_loader, test_loader
class MNIST(datasets.MNIST):
def __init__(self, train, normalise=True, save_dir="data"):
if normalise:
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=(0.1307), std=(0.3081)
)
]
)
else:
transform = transforms.Compose([transforms.ToTensor()])
super().__init__(save_dir, download=True, train=train, transform=transform)
def __getitem__(self, index):
img, label = super().__getitem__(index)
img = torch.flatten(img)
label = one_hot(label)
return img, label
def one_hot(labels, n_classes=10):
arr = torch.eye(n_classes)
return arr[labels]
Network¤
For jpc
to work, we need to provide a network with callable layers. This is easy to do with the PyTorch-like nn.Sequential()
in equinox. For example, we can define a ReLU MLP with two hidden layers as follows
key = jax.random.PRNGKey(SEED)
_, *subkeys = jax.random.split(key, 4)
network = [
nn.Sequential(
[
nn.Linear(784, 300, key=subkeys[0]),
nn.Lambda(jax.nn.relu)
],
),
nn.Sequential(
[
nn.Linear(300, 300, key=subkeys[1]),
nn.Lambda(jax.nn.relu)
],
),
nn.Linear(300, 10, key=subkeys[2]),
]
You can also use jpc.make_mlp()
to define a multi-layer perceptron (MLP) or fully connected network.
network = jpc.make_mlp(
key,
input_dim=INPUT_DIM,
width=WIDTH,
depth=DEPTH,
output_dim=OUTPUT_DIM,
act_fn=ACT_FN,
use_bias=True
)
print(network)
[Sequential(
layers=(
Lambda(fn=Identity()),
Linear(
weight=f32[300,784],
bias=f32[300],
in_features=784,
out_features=300,
use_bias=True
)
)
), Sequential(
layers=(
Lambda(fn=<PjitFunction of <function relu at 0x10cea9c60>>),
Linear(
weight=f32[300,300],
bias=f32[300],
in_features=300,
out_features=300,
use_bias=True
)
)
), Sequential(
layers=(
Lambda(fn=<PjitFunction of <function relu at 0x10cea9c60>>),
Linear(
weight=f32[10,300],
bias=f32[10],
in_features=300,
out_features=10,
use_bias=True
)
)
)]
Train and test¤
A PC network can be updated in a single line of code with jpc.make_pc_step()
. Similarly, we can use jpc.test_discriminative_pc()
to compute the network accuracy. Note that these functions are already "jitted" for optimised performance. Below we simply wrap each of these functions in training and test loops, respectively.
def evaluate(model, test_loader):
avg_test_loss, avg_test_acc = 0, 0
for _, (img_batch, label_batch) in enumerate(test_loader):
img_batch, label_batch = img_batch.numpy(), label_batch.numpy()
test_loss, test_acc = jpc.test_discriminative_pc(
model=model,
input=img_batch,
output=label_batch
)
avg_test_loss += test_loss
avg_test_acc += test_acc
return avg_test_loss / len(test_loader), avg_test_acc / len(test_loader)
def train(
model,
lr,
batch_size,
test_every,
n_train_iters
):
optim = optax.adam(lr)
opt_state = optim.init(
(eqx.filter(model, eqx.is_array), None)
)
train_loader, test_loader = get_mnist_loaders(batch_size)
for iter, (img_batch, label_batch) in enumerate(train_loader):
img_batch, label_batch = img_batch.numpy(), label_batch.numpy()
result = jpc.make_pc_step(
model=model,
optim=optim,
opt_state=opt_state,
output=label_batch,
input=img_batch
)
model, opt_state = result["model"], result["opt_state"]
train_loss = result["loss"]
if ((iter+1) % test_every) == 0:
_, avg_test_acc = evaluate(model, test_loader)
print(
f"Train iter {iter+1}, train loss={train_loss:4f}, "
f"avg test accuracy={avg_test_acc:4f}"
)
if (iter+1) >= n_train_iters:
break
Run¤
train(
model=network,
lr=LEARNING_RATE,
batch_size=BATCH_SIZE,
test_every=TEST_EVERY,
n_train_iters=N_TRAIN_ITERS
)
Train iter 100, train loss=0.007197, avg test accuracy=93.309296
Train iter 200, train loss=0.005052, avg test accuracy=95.462738
Train iter 300, train loss=0.006984, avg test accuracy=95.903442